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o Abstract

For the production of aluminum electrolytic cells are used (Fig. 1), in which the
electrolysis of alumina (Al,O,) dissolved in a cryolitic (Na;AlFg) based bath is
done at around 4.2 V and 300 kA.
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According to @ye & al. if the chemical erosion of the carbon cathode block
(Al,C; formation and dissolution) was the only failure of the cell, then it could
operate around 11 years. However it is never the case in the industry because
failure due to corrosion of the refractory layers is the most common reason for
cell shut down.
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In the cell the refractory lining is mainly composed of aluminosilicate materials. Current Collecting

The corrosion of this lining is due to the penetration of bath and aluminum
through the carbon cathode block. Different corrosion mechanisms are involved
which will lead to the progression of the corrosive media further in the refractory
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Fig. I: Schematic view of an aluminum electrolysis cell

O Binary Systems

A critical review of the available data for the binary, ternary and reciprocal subsystems has been performed, and the data are being used in
the on-going optimization process. The presented figures represent the work in progress.

The ordering compositions in the liquid phase are set to the following composition in the different binary subsystems:

* Al,O;-Na,O: we have decided to extend the stability of the associate NaAl** from the ternary into the binary system in order to optimize it
while maintaining cation distribution in the reciprocal system.

*Al,0,-SiO,: at the mullite (3 Al, 03,2 SiO,) composition X ;03=0.6 .

*Na,0-SiO,: at the orthosilicate composition, Na,SiO, or Xy,,0=0.8 .

Thermodynamic properties of solids are mainly based on JANAF and Barin thermodynamic tables and the previous optimization of the
system by P. Wu (PhD Thesis, CRCT, 1993)
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Strong interactions are observed between the components, both in the solid and liquid states, resulting in strong short range order in the liquid solution:
second nearest neighbour cationic ordering is modeled using the Modified Quasichemical Model in the Quadruplet Approximation (MQMQA). However in
order to model the complete composition of the system we need to take into account anion interactions (mixing of O2 and F- on the second sublattice).
MQMQA : 2 sublattice model

« Components : cation sublattice @ anion sublattice @ . .

* Quadruplets :  unary . @ binary s ... reciprocal ,
G’@ ’@ .® G’@

* Gibbs energy :

from pure component, AI203 NaF .; binary system, Na,O-SiO, e’
@ @ @ ()

« Quadruplets mix randomly with overlapping of pairs and ions (the configurational entropy term take this into account).
« Equilibrium is obtained by Gibbs energy minimization constrained by an elemental mass balance.

reciprocal system AlF,-NaF-Al,O,-Na,O @G

The first step in the thermodynamic modeling of this reciprocal system is to obtain model parameters for the Al,0,-Na,O-SiO, system. In the case of the
oxide subsystem we only have one anion mixing on the second sublattice. Second nearest neighbour coordination numbers have to be defined which
allow to reproduce the composition of the maximum short-range ordering in the different subsystems. To model the charge compensation effect we have
introduced a NaAl4+ associate, which will mix on the cation sublattice.
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the reciprocal system should be done without major changes.
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