The FSnobl (SGTE) noble metal alloy database

 

With FactSage 5.3 & 5.4 there have been many changes, not only in the content of the databases, but in the way they are organized and used.  Be sure to read the general documentation "How to use the databases with FactSage 5.4" on the previous menu.  

 

TO OBTAIN :

 

-         A LIST OF all the unary, binary, ternary and quaternary SYSTEMS WHICH HAVE BEEN ASSESSED

 

-         A LIST OF ALL ASSESSED phases IN EACH OF THE SYSTEMS

 

-         A CALCULATED PHASE DIAGRAM FOR EACH OF THE LISTED BINARY SYSTEMS

 

-         ASSiSTANCE WITH PHASE SELECTION

 

CLICK ON "List of optimized systems and calculated binary phase diagrams."

 

General

 

The data in the noble metal alloy database originate from a collaboration between

             The Spencer Group Inc., Trumansburg, NY, USA and

             GTT-Technologies, Herzogenrath, Germany.

 

The database contains evaluated thermodynamic parameters for alloys of

 

Ag, Au, Ir, Os, Pd, Pt, Rh, Ru

 

alloyed amongst themselves and also in alloys with the metals

 

Al, As, Bi, C, Co, Cr, Cu, Fe, Ge, In, Mg, Ni, Pb, Sb, Si, Sn, Ta, Te, Ti, Tl, Zn, Zr.

 

The evaluated parameters in the Noble Metal Alloys Database are based on data collected from publications and internal project reports or have been assessed as part of the development of the database.

 

In only a few cases are the assessed parameters based on a large amount of experimental information. For many systems, very few, or even no thermodynamic measurements are available. This has necessitated use of published phase boundary information only, with a combination of estimated and optimized mixing parameters to provide a thermodynamic description of the systems concerned. For some inter-noble metal alloys, where complete ranges of solid and liquid solutions are observed, the descriptions should still be fairly reliable. For others, while a reasonable phase diagram description may have been obtained, the thermodynamic values (i.e. enthalpies and entropies) for the different phases may have large errors associated with them.

 

Specific information on each alloy system can be obtained from the list of references below.

 

Database Applications

 

Noble metals and their alloys have a wide variety of applications, and calculations of relevant phase equilibria in a particular case are important e.g. for optimizing suitable alloy compositions or predicting reaction products in chemically aggressive environments.

 

Some examples of noble metal alloy use are:

 

q       Jewelry and decoration

q       Electronic components; micro-electronic contact materials

q       Solders and brazes

q       Dental alloys

q       Fission products

q       Catalysts

q       New minority alloy components, e.g. in turbine alloys

q       Scientific equipment, e.g. thermocouples, crucibles, calorimeters

 

Because of their value, noble metal alloys undergo extensive recycling. For this reason, information on dilute ranges of impurity elements in precious metals is important with respect to different methods of refining. Among such methods are oxygen refining and some use of halogens. In such cases, the database should be used in conjunction with the SGTE Pure Substances Database to take into account relevant condensed and gaseous oxides and halides.

 

The database will often be used with one of the noble metals as major component, but in a number of applications, large concentrations of alloying elements are present. For this reason, and whenever possible, the assessed parameters in the noble metal alloys database cover the entire composition range of the alloys involved (see below for information on relevant ranges for specific alloys). There are very few ternary interaction parameters available in the database and it must be realized that calculation of phase boundaries in higher-order systems by combination of binary alloy data only may give very unreliable results.

 

In a binary system, if no assessed mixing parameters are available for a particular phase, the phase will be treated as ideal. Correspondingly, the properties of a ternary or higher-order phase will be calculated applying the appropriate models used in the database. This procedure may give useful results if the alloy compositions in question are close to a pure component or to a binary edge for which assessed data are available. However, results of calculations for other composition ranges should be treated with extreme caution. 

 

In its present stage of development, the database can best be used for calculations relating to Ag-, Au-, Pd- and Pt-rich alloys containing small amounts (3-5%) of impurity or alloying elements. At the same time, the assessed data it contains for the binary and ternary sub-systems of Au-Pd-Pt-Sn allow calculations relevant to dental alloy development.

 

More generally, the database provides a good starting basis for development of data for higher-order noble metal systems.

 

Composition Ranges

 

Most of the binary alloy systems have been assessed over the entire composition range. Only a few ternary and higher-order parameters are available.

 

Temperature Ranges

 

The database is generally valid for the temperature range 300oC to 2500oC. Phase boundaries and thermodynamic properties measured at lower temperatures may not correspond to the equilibrium state of the alloy, even after very long annealing times.

 

Modeling

 

The database makes use of the SGTE Pure Element Data and, as such, is compatible with other SGTE Solution and Application Databases as well as the SGTE Pure Substance database.

 

In the assessments, the liquid phase has been described using a simple substitutional solution approach based on the Redlich-Kister-Muggianu polynomial expression. Some solid phases with narrow ranges of composition have been simplified to compounds with no compositional variation. Others have been modeled applying the compound energy formalism using several sublattices.

 

Binary systems assessed over complete range of composition:

(New additions and updates are in red)

 

Ag-Al:    Ag-Au:    Ag-Bi:    Ag-Cu:    Ag-Ge:    Ag-In:    Ag-Ir:    Ag-Mg:    Ag-Os:    Ag-Pb:    Ag-Pd:    Ag-Pt:    Ag-Rh:    Ag-Ru:    Ag-Sb:    Ag-Si:    Ag-Sn:    Ag-Ti:    Ag-Tl:    Ag-Zn:    Ag-Zr:   

Au-Al:    Au-As:    Au-Bi:    Au-C:    Au-Cr:    Au-Cu:    Au-Ge:    Au-In:    Au-Pb:    Au-Pd:   

Au-Pt:    Au-Rh:    Au-Ru:    Au-Sb:    Au-Si:    Au-Sn:    Au-Te:    Au-Ti:    Au-Tl:   

In-Pb:    Cu-Pb:

 

Pd-Co:    Pd-Fe:    Pd-Ir:    Pd-Ni:    Pd-Pb:    Pd-Pt:    Pd-Ru:    Pd-Sn:*   Pd-Ti:   

Pt-Co:    Pt-Cr:    Pt-Rh:    Pt-Ru:    Pt-Sn:    Pt-Ta:    Pt-Ti:   

Rh-Ru:    Sn-In:     Sn-Zn:    In-Zn:

 

* Please note that two descriptions of the Pd-Sn system are provided.

The first description uses a simplified, stoichiometric modeling of the compound phases, which is compatible with the assessed parameters for the Pd-Pt-Sn and Au-Pd-Pt-Sn systems. The compound phases denoted by _gtt should be used with the LIQ-gtt and FCC_gtt phases.

The second description provides a more rigorous modeling of the binary Pd-Sn system. In this case the phases with no additional definition should be used with the LIQUID and FCC phases.

 

Binary systems assessed over a partial range of composition:

 

Au-Zn:      to 50 at% Zn (crude description)

Pd-In:       to 35 at% In

Pd-Zn:      to 15 at% Zn (fcc/liquid equilibria only)

Pt-In:        to 30 at% In

Pt-Zn:       data for the compounds Pt3Zn and PtZn are estimated

 

Ternary systems

 

Ag-Cu-Pb:   Au-In-Pb:    Au-Pd-Pt:    Pb-Pd-Sn:     Pd-Pt-Sn:    Pd-Pt-Ti:

 

 

Quaternary system

 

Au-Pd-Pt-Sn:

 

 

N.B. Pure element Gibbs energy data have been included in the form of Me_SGPS expressions for a number of elements. This is to facilitate calculations for systems where the primary solid solution range is negligible. However, to avoid incorrect phase boundary calculations, it is preferable to suppress these parameters in most cases.

 

The phase diagrams of all the binary systems listed above were checked, using FactSage, July 2004.

 

Authorship and Contacts

 

Ownership of the Noble Metal Alloy Database belongs to The Spencer Group.

 

For questions relating to the data, please contact Dr. Philip Spencer at The Spencer Group Inc. – Tel. (1)-607-387-4038;   FAX  (1)-607-387-4039,

or

Dr. Klaus Hack at GTT-Technologies – Tel. (49)-2407-59533;   FAX (49)-2407-59661.

 

 

DISCLAIMER

 

The Spencer Group Inc. and GTT-Technologies assumes no responsibility for the validity of results from a calculation using data from the noble metal alloy database and is not liable for any damage or loss, subsequential or otherwise, caused by the application of results.

 

 

References

 

Pure Element Data

 

A.T. Dinsdale, SGTE Data for Pure Elements, Calphad 15 (1991), pp.317-425

 

Binary Systems

 

Ag-Al:                   S.S. Lim, P.L. Rossiter, J.W. Tibbals, Calphad 19 (1995) 131-142.

Ag-Au:                  M. Hassam, J. Agren, M.Gaune-Escard, J.P.Bros,

                              Metall. Trans. 21A (1990) 1877-1884.

Ag-Bi:                   H.L. Lukas, unpublished work, (1998)

                              based on Zimmermann's original work; Ag-Bi'.

Ag-C:                    J. Korb, GTT-Technologies, 2004.

Ag-Co:                  T. Jantzen, GTT-Technologies, 2004.

Ag-Cr:                   J. Korb, GTT-Technolgies, 2004.

Ag-Cu:                  Unpublished update by F.H. Hayes using unaries of A.T. Dinsdale

                              from: F. H. Hayes, H. L. Lukas, G. Effenberg, and G. Petzow,

                              Z. Metallkde. 77  (1986) 749-754.

Ag-Fe:                   J. Korb, GTT-Technologies, 2004.

Ag-Ge:                  P.Y. Chevalier, Thermochimica Acta 130 (1988) 25-32.

Ag-In:                   B.J. Lee, Private communication; (1999).

                  Update by T. Jantzen: AgIn2 was not present,

                  Hf(AgIn2)=-13554.0782 (was –12814.0782).

Ag-Ir:                    P.J. Spencer, 1998; based on I. Karakaya and W.T. Thompson,

                              Bull. Alloy Phase Diagrams 7 (1986) 359.

Ag-Mg:                 P.J. Spencer, July 1998.

Ag-Ni:                   J. Korb, GTT-Technologies, 2004.

Ag-Os:                  P.J. Spencer, 1998; based on I. Karakaya and W.T. Thompson,

                              Bull. Alloy Phase Diagrams 7 (1986) 361.

Ag-Pb:                   F.H. Hayes, H.L. Lukas, G. Effenberg; Z. Metallkde, 77 (1986),

                              pp. 749-754.

Ag-Pd:                   P.J. Spencer, 1998, based on I. Karakaya and W.T. Thompson,

                              Bull. Alloy Phase Diagrams 1987, Vol.8.

Ag-Pt:                   P.J. Spencer, 1998, based on I.Karakaya and W.T.Thompson,

                              Bull. Alloy Phase Diagrams 8 (1987) 334.

Ag-Rh:                  P.J. Spencer, 1998, based on I.Karakaya and W.T.Thompson,

                              Bull. Alloy Phase Diagrams 7 (1986) 362.

Ag-Ru:                  P.J. Spencer, 1998, based on I. Karakaya and W.T. Thompson,

                              Bull. Alloy Phase Diagrams 7 (1986) 367.

Ag-Sb:                   Oh, Shim, Lee and Lee, J. Alloys Compounds, 238 (1996) 155-66.

Ag-Si:                    P.Y. Chevalier, Thermochimica Acta 113 (1988) 33-41.

Ag-Sn:                   Oh, Shim, Lee and Lee, J. Alloys Compounds 238 (1996) 155-66:

                              Data for fcc phase modified by A.T.Dinsdale due to change in fcc Sn

                              unary data.

Ag-Ti:                   P.J. Spencer, July 1998, based on J.Murray, Bull.Alloy Phase

                              Diagrams 4 (1983) 178.

Ag-Tl:                   H.L.Lukas, reassessment based on Zimmerman thesis, MPI, Stuttgart,

                              1976.

Ag-Zn:                   T. Gomez-Acebo, Calphad 22 (1998) 203-220.

Ag-Zr:                   P.J. Spencer, 1998; based on I.Karakaya and W.T.Thompson,

                              J. Phase Equilibria 13 (1992) 143.

 

Au-Al:                   J. Murray, A. Okamoto, T.B. Massalski, Bull.Alloy Phase Diags.

                              8 (1987) 20: Modified by A.T.Dinsdale due to change in SGTE unary

                              data and to prevent high temperature stability of fcc phase.

                              Update by T. Jantzen: The mistake in the optimisation 87Mur,

                              fcc-A1 and AlAu(ST) were in equilibrium,

                              DHF(AlAu)=-61731.07 J/mol (was –61571.07).

Au-As:                  P.J. Spencer, June 1998.

Au-Bi:                   P.Y. Chevalier, Thermochimica Acta 130 (1988) 15-24.

Au-C:                    P.J. Spencer, June 1998.

Au-Cr:                   P.J. Spencer, June 1998.

Au-Cu:                  B. Sundman, S.G. Fries, W.A. Oates, Calphad 22 (1998) 335-354:

                              Assessment with only parameters for the disordered phases.

Au-Ge:                  P.Y. Chevalier, Thermochimica Acta 141 (1989) 217-226.

Au-In:                   I. Ansara, J.P. Nabot, Thermochimica Acta 129 (1999) 89-97.

Au-Pb:                   J.P. Nabot, Thesis, LTPCM, Grenoble, 1986.

Au-Pd:                   P.J. Spencer, 1994, based on R. Hultgren et al., Selected Values of the

                              Thermodynam.Props. of Binary Alloys, ASM, Metals Park, Ohio,           1971.

Au-Pt:                   P.J. Spencer, 1994, based on R. Hultgren et al., Selected Values of the

                              Thermodynam. Props. of Binary Alloys, ASM, Metals Park, Ohio,

                              1971.

Au-Rh:                  P.J. Spencer, June 1998.

Au-Ru:                  P.J. Spencer,  June 1998.    

Au-Sb:                   P.Y. Chevalier, Thermochimica Acta 155 (1989) 211-225.

Au-Si:                    P.Y. Chevalier, private communication to SGTE, July, 1998.

Au-Sn:                   Based on P.Y. Chevalier, Thermochimica Acta 130 (1988) 1-13:

                              Changes to fcc and hcp pure Sn data invoked modification by

                              A.T. Dinsdale of interaction parameters for these phases (April, 1998).

Au-Te:                  Y. Feutelais, D. Mounai, J.R. Didry, B. Legendre,

                              J.Phase Equilib. 15 (1994) 380: Data for the AuTe2 phase modified by

                              A.T.Dinsdale.

Au-Ti:                   K. Hack, GTT-Technologies,1996: based on J.Murray, Bull.Alloy

                              Phase Diagrams 4 (1983) 278.

Au-Tl:                   P.Y. Chevalier, Thermochimica Acta 155 (1989) 211-225.

Au-Zn:         P.J. Spencer, 1995. Crude description of Au-rich phase equilibria,

                              but thermodynamic values based on experimental data and probably

                              reasonable.

 

Cu-Pb:                   F.H. Hayes, H.L. Lukas, G. Effenberg, G. Petzow,

                              Z. Metallkde, 77(1986) 11, pp. 749-754.

                              Update: T. Jantzen L(hcp-A3)=20000 added to give proper instability

                              of hcp-A3.

 

In-Pb:                    J.P. Nabot, Thesis (Grenoble 1986).

                              Update: T. Jantzen L(hcp-A3)=20000 added to give proper instability

                              of hcp-A3.

 

Ir-Pd:                    P.J. Spencer, June 1998. 

 

Pd-Co:                   G. Ghosh, C. Kantner, G.B. Olson, J.Phase Equilibria 20 (1999),

                              pp. 295-308.

Pd-Fe:                   G. Ghosh, C. Kantner, G.B. Olson, J.Phase Equilibria 20 (1999),

                              pp. 295-308.

Pd-In:                    P.J. Spencer, 1994. Pd-rich range only, based on C .Colinet,

                              A. Bessoud, A.Pasturel, Z. Metallkunde 77 (1986) 798.

Pd-Ni:                   G. Ghosh, C. Kantner, G.B. Olson, J.Phase Equilibria 20 (1999),

                              pp. 295-308.

Pd-Pb:                   G. Ghosh, Metall Trans 30A (1999) 5-18.

Pd-Pt:                    K. Hack, GTT-Technologies, 1995.

Pd-Ru:                  P.J. Spencer, June 1998.

Pd-Sn:                   G. Ghosh, Metall Trans 30A (1999) 5-18.

Pd-Sn:                   M. Kowalski, 1995. Particular emphasis given to the enthalpies of

                              formation of the compounds. Liquidus not so reliable. The data set is

                              consistent with assessments in the Au-Pd-Pt-Sn system.

Pd-Ti:                    K. Hack, GTT-Technologies,1996, based on J.Murray, Bull.Alloy

                              Phase Diagrams 3 (1982) 329.

Pd-Zn:                   P.J. Spencer, 1994. Crude evaluation for Pd-rich alloys based on

                              T.-H. Chiang, H. Ipser, Y.A. Chang, Z.Metallkunde 68 (1977) 141.

                              No reliable phase diagram information in this region.

 

Pt-Co:                   P.J. Spencer, December 2002.

Pt-In:                     P.J. Spencer, 1994. Pt-rich range only, based on C. Colinet,

                              A. Bessoud, A. Pasturel, Z. Metallkunde 77 (1986) 798.

Pt-Rh:                   P.J. Spencer, June 1998.

Pt-Ru:                   P.J. Spencer, June 1998.

Pt-Sn:                    P.J. Spencer, June 1998. Based on estimated enthalpies of formation of

                              the compound phases (Miedema method).

Pt-Ta:                    P.J. Spencer, June 1998.

Pt-Ti:                     K. Hack, GTT-Technologies, 1996, based on J.Murray, Bull.Alloy

                              Phase Diagrams 3 (1982) 321.

Pt-Zn:                    P.J. Spencer, 1994. Estimated data for Pt3Zn and PtZn only using

                              Miedema method.

 

Sn-In:                    I. Ansara, S. G. Fries, H. L. Lukas, Unpublished work; In-Sn, 1999.

 

Zn-In:                    B.J. Lee, Calphad 20 (1996) 471-480.     

 

Ternary Alloys

 

Ag-Cu-Pb:             F.H. Hayes, H.L. Lukas, G. Effenberg, G. Petzow,

                              Z. Metallkde 77 (1986) 749-754.

 

Au-In-Pb:              J.P. Nabot, Thesis, Grenoble, 1986.

Au-Pd-Pt:              A. Forstreuter, 1997. Fcc, based on Z. Metallkde, 46 (1955) Issue 7.

 

Pb-Pd-Sn:              SGTE Update database.

 

Pd-Pt-Sn:              A. Forstreuter, 1997. Liquid, (Pd,Pt)3Sn, (Pd,Pt)5Sn3, (Pd,Pt)3Sn2,

                              based on Canadian Mineralogist, 1981, Vol.19.

Pd-Pt-Ti:               Pseudo-binary mixtures (Pd,Pt)3Ti and (Pd,Pt)Ti introduced because

                              of identical crystallographic data for binary compounds. Ideal

                              behaviour assumed.

 

 
Quaternary Alloys

 

Au-Pd-Pt-Sn          A. Forstreuter, private communication to GTT, 1997.