The FactSage FSlite light metal alloy database
With FactSage 5.3 & 5.4 there have been many changes, not only in the content of the databases, but in the way they are organized and used. Be sure to read the general documentation "How to use the databases with FactSage 5.4" on the previous menu.
TO OBTAIN :
- A LIST OF all the unary, binary, ternary and quaternary SYSTEMS WHICH HAVE BEEN ASSESSED
- A LIST OF ALL ASSESSED phases IN EACH OF THE SYSTEMS
- A CALCULATED PHASE DIAGRAM FOR EACH OF THE LISTED BINARY SYSTEMS
- ASSiSTANCE WITH PHASE SELECTION
CLICK ON "List of optimized systems and calculated binary phase diagrams."
The FactSage FSlite light alloy database has been derived from the database that resulted from the European COST Action 507 (COST 507, Thermochemical database for light metal alloys, Vol.2, Eds. I.Ansara, A.T.Dinsdale, M.H.Rand, Office for Official Publications of the European Communities, Luxembourg, 1998 (ISBN 92-828-3902-8)). However, it has been much improved by corrections of the original data and many additions in terms of binary and higher order subsystems. For details of the modifications and additions see below.
The elements included in the database are:
Al, B, C, Ce, Cr, Cu, Fe, Hf, Li, Mg, Mn, Mo, Nb, Nd, Ni, Si, Sn, Ta, Ti, V, Y, W, Zn, Zr
From among these elements, there are 117 completely assessed binary alloy systems together with 30 ternary and 3 quaternary systems for which assessed parameters are available for phases of practical relevance. A large number of new published assessments (44 binary, 9 ternary, 3 quaternary), some amendments and some updates are now incorporated in this upgraded light alloy database. As such, the database is intended to provide a sound basis for calculations relating to the production and heat treatment of
Al-, Mg-, and Ti-based alloys.
The major source of data have been the assessments contained in the SGTE Solution Database, together with more recent published assessments and updates.
All the assessed binary systems included in the light alloy database are described over all ranges of composition and temperature, i.e. the assessed data provide a good description of the complete phase diagrams and thermodynamic properties for the binary alloy systems concerned.
Although a large number of ternary interaction parameters are included for the different phases in the database, these are in many cases associated only with Al- or Mg-rich alloy phases. As such, care should be exercised in calculating phase equilibria for other composition ranges of multi-component alloys. By referring to the listing of systems and phases for which assessed parameters are available, the user can determine whether proposed calculations for a particular higher-order system will be based on a complete set of assessed binary and ternary parameters (at best) or summation of binary parameters only (at worst). Clearly the latter case, or use of incompletely assessed data sets, can lead to incorrect or unreliable results.
In a binary system, if no assessed mixing parameters are available for a particular phase, the phase will be treated as ideal. Correspondingly, the properties of a ternary or higher-order phase will be calculated using the appropriate models used in the database. This procedure may give useable results if the alloy compositions in question are close to a pure component or to a binary edge for which assessed data are available. However, results of calculations for other composition ranges should be treated with extreme caution.
Specific information on each alloy system can be obtained from the list of references supplied below.
As mentioned above, the database is intended to allow calculation over all ranges of composition, although the assessed data are often most reliable for light metal rich composition ranges.
The database is generally valid for the temperature range of approximately 200oC to 1800oC, although for some alloys containing high melting point metals the data are reliable to still higher temperatures.
In the assessments, the liquid phase has been described using a simple substitutional solution approach based on the Redlich-Kister-Muggianu polynomial expression. Most solid solution phases have been described using sublattice models which include interstitials and vacancies where appropriate.
(The original COST 507 systems are in black, new additions and updates are in red)
Al-B Al-C Al-Ce Al-Cr Al-Cu Al-Fe Al-Li Al-Mg Al-Mn Al-Mo Al-Nb Al-Nd Al-Ni Al-Si Al-Sn Al-Ta Al-Ti Al-V Al-Y Al-W Al-Zn Al-Zr B-C B-Cr B-Fe B-Hf B-Mo B-Ni B-Si B-Ti B-V B-W C-Si C-Ti Ce-Mg Cr-Cu Cr-Fe Cr-Mg Cr-Mn Cr-Nb Cr-Ni Cr-Si Cr-Ti Cr-V Cr-W Cr-Zn Cr-Zr Cu-Fe Cu-Li Cu-Mg Cu-Mn Cu-Nb Cu-Ni Cu-Si Cu-Sn Cu-Ti Cu-V Cu-Y Cu-Zn Cu-Zr Fe-Mg Fe-Mn Fe-Si Fe-Ti Fe-Zn Hf-Ti Li-Mg Li-Zr Mg-Mn Mg-Ni Mg-Si Mg-Y Mg-Zn Mg-Zr Mn-Mo Mn-Ni Mn-Si Mn-Ti Mn-V Mn-Y Mn-Zr Mo-Nb Mo-Ni Mo-Si Mo-Ta Mo-Ti Mo-W Nb-Ti Nb-V Nb-W Nb-Zr Ni-Si Ni-Ta Ni-Ti Ni-V Ni-W Ni-Y Ni-Zr Si-Sn Si-Ta Si-Ti Si-V Si-W Si-Y Si-Zn Si-Zr Sn-Ti Sn-Zn Sn-Zr Ta-Ti Ta-W Ta-Zr Ti-V Ti-W Ti-Zr V-Zr Y-Zr
Al-C-Si Al-Cu-Li Al-Cu-Mg Al-Cu-Mn Al-Cu-Si Al-Cu-Zn Al-Fe-Mn Al-Fe-Si Al-Fe-Zn Al-Li-Mg Al-Mg-Mn Al-Mg-Si Al-Mg-Zn Al-Mn-Si Al-Mo-Ti Al-Nb-Ti Al-Si-Zn Al-Sn-Zn Al-Sn-Zr Al-Ta-Ti Al-Ti-V Al-Ti-W B-C-Hf B-Hf-Ti Cr-Cu-Zr Cu-Mg-Ni Cu-Mg-Si Cu-Mg-Y Cu-Mg-Zn Cu-Sn-Zn
The phase diagrams of all the binary systems listed above have been checked using FactSage.
If there is the possibility of a miscibility gap (or 2 miscibility gaps) occuring in the LIQUID, FCC, BCC or HCP phase, the I-option (J-option) must be used in selecting that phase for the calculations.
The I-option also needs to be used with the ordered solid solutions, B2_BCC and L12_FCC, which are based on the BCC or FCC disordered state (see below).
Special comments:
Al-Ni: The ALNI (ordered BCC) and L12_FCC (ordered FCC) phases must both
be selected with the I option.
Al-Ti: The TiAl phase should be entered with the I option.
Al-Cu: There are two alternative descriptions of the system:
1. with gamma-D83
2. with gamma-lia, which uses a different model. Gamma-lia should be entered with the J option.
Cu-Zn: There are two alternative descriptions of the system:
1. with CuZn-gamma
2. with gamma-lia, which uses a different model. Gamma-lia should be entered with the J option.
References
Pure Element Data
A.T. Dinsdale, SGTE Data for Pure Elements, Calphad 15 (1991), pp.317-425
Al-B: COST 507, Thermochemical database for light metal alloys, Vol.2, Eds.
I.Ansara, A.T.Dinsdale, M.H.Rand, Office for Official Publications of
the European Communities, Luxembourg, 1998, pp.5-17. (ISBN 92-
828-3902-8).
Al-C: COST 507, pp.8-19.
Al-Ce: COST 507, pp.20-22.
Al-Cr: COST 507, pp.23-27
Al-Cu: COST 507, pp.28-33.
Al-Fe: COST 507, pp.34-39.
Al-Li: COST 507, pp.40-43.
Al-Mg: COST 507, pp.48-53.
Al-Mn: COST 507, pp.54-58.
Al-Mo: COST 507, pp.59-64.
Al-Nb: COST 507, pp.69-74.
Al-Nd: COST 507, pp.75-78.
Al-Ni: K. Hack, GTT-Technologies, private communication, 2003
Al-Si: COST 507, pp.79-80.
Al-Sn: COST 507, pp.81-82.
Al-Ta: COST 507, pp.83-88.
Al-Ti: COST 507, pp.89-94.
Al-V: COST 507, pp.95-98.
Al-Y: COST 507, pp.99-102.
Al-W: COST 507, pp.103-108.
Al-Zn: S. –L. Chen and Y.A. Chang, Calphad, 17 (1993), pp. 113-124.
Al-Zr: COST 507, pp.112-116.
B-C: COST 507, pp.117-119.
B-Cr: L.M. Pan, unpublished research in SGTE Solution Database, 1991.
B-Fe: B. Hallemans, P.Wollants, J.Roos, J. Phase Equilib. 16 (1995),
pp. 137-149.
B-Hf: COST 507, pp.120-122.
B-Mo: L.M. Pan, unpublished research in SGTE Solution Database, 1991.
B-Ni: L.M. Pan, unpublished research in SGTE Solution Database, 1991.
B-Si: COST 507, pp.126-128.
B-Ti: COST 507, pp.129-131.
B-V: L.M. Pan, unpublished research in SGTE Solution Database, 1991.
B-W: H. Duschanek, P. Rogl, J. Phase Equilib. 16 (1995), pp. 150-161.
C-Hf: H. Bitterman, P. Rogl, J. Phase Equilib. 18 (1997), pp. 344-356.
C-Si: COST 507, pp.132-133.
C-Ti: COST 507, pp.134-136.
Ce-Mg: COST 507, pp.137-140.
Cr-Cu: COST 507, pp.141-142.
Cr-Fe: B.J. Lee, Calphad 17 (1993), pp. 251-268.
Cr-Mg: COST 507, pp.143-144.
Cr-Mn: COST 507, pp.145-148.
Cr-Nb: J.G. Costa Neto, S.G. Fries, H.L. Lukas, Calphad 17 (1993), pp.219-228.
Cr-Ni: B.J. Lee, Calphad 16 1992, pp. 121-149.
Cr-Si: COST 507, pp.149-152.
Cr-Ti: COST 507, pp.153-155.
Cr-V: COST 507, pp.156-157.
Cr-W: P. Gustafson, Calphad 12 (1988), pp. 277-292.
Cr-Zn: COST 507, pp.158-160.
Cr-Zr: COST 507, pp.161-164.
Cu-Fe: COST 507, pp.165-167.
Cu-Li: COST 507, pp.168-169.
Cu-Mg: COST 507, pp.170-174.
Cu-Mn: K. Lewin, D. Sichen, S. Seetharaman, Scand. J. Met. 22 (1993),
pp. 310-316.
Update P. Franke, LTH, RWTH Aachen, 2002.
Cu-Nb: B.J. Lee database, private comunication to SGTE, 1999.
Cu-Ni: COST 507, pp.175-177.
Cu-Si: T. Jantzen, H.L. Lukas, unpublished work. 2000.
Cu-Sn: J.H. Shim, C.S. Oh, B.J. Lee, D.N. Lee, Z.Metallkde 87 (1996),
pp. 205-212.
Cu-Ti: K.C.H. Kumar, I. Ansara, P. Wollants, L. Delaey, Z.Metallkde. 87
(1996), pp. 666-672.
Cu-V: B.J. Lee database, private comunication to SGTE, 1999.
Cu-Y: COST 507, pp.182-185.
Cu-Zn: COST 507, pp.186-191.
Cu-Zr: COST 507, pp.192-194.
Fe-Mg: COST 507, pp.195-196.
Fe-Mn: COST 507, pp.197-199.
Fe-Si: COST 507, pp.200-204.
Fe-Ti: COST 507, pp.205-207.
Fe-Zn: G. Reumont, P. Perrot, J.M. Fiorani, J. Hertz, J. Phase Equilibria 21
(2000), pp. 371-378.
Hf-Ti: COST 507, pp.208-209.
Li-Mg: COST 507, pp.210-212.
Li-Zr: COST 507, pp.213-214.
Mg-Mn: COST 507, pp.215-217.
Mg-Ni: COST 507, pp.218-220.
Mg-Si: COST 507, pp.221-223.
Mg-Y: H.J. Seifert, J. Groebner, F. Aldinger, F.H. Hayes, G. Effenberg,
C. Baetzner, H. Flandorfer, P. Rogl, A. Saccone, R. Ferro, Proc.3rd.
International Magnesium Conference, Ed. G. W. Lorimer, Inst.of
Materials, London, 1997, pp. 257-270.
Mg-Zn: COST 507, pp.227-233.
Mg-Zr: COST 507, pp.234-235.
Mn-Mo: B.J. Lee database, private communication to SGTE, 1999.
Mn-Ni: NPL, unpublished work, 1989.
Mn-Si: COST 507, pp.236-240.
Mn-Ti: COST 507, pp.241-244.
Mn-V: W. Huang, Met. Trans.A 22A (1991) 1911-1920.
Mn-Y: H.J. Seifert, J. Groebner, F. Aldinger, F.H. Hayes, G. Effenberg,
C. Baetzner, H. Flandorfer, P. Rogl, A. Saccone, R. Ferro, Proc.3rd.
International Magnesium Conference, Ed. G. W. Lorimer, Inst.of
Materials, London, 1997, pp. 257-270.
Mn-Zr: H.J. Seifert, J. Groebner, F. Aldinger, F.H. Hayes, G. Effenberg,
C. Baetzner, H. Flandorfer, P. Rogl, A. Saccone, R. Ferro, Proc.3rd.
International Magnesium Conference, Ed. G. W. Lorimer, Inst.of
Materials, London, 1997, pp. 257-270.
Mo-Nb: P.Y. Chevalier, Thermodata, SGTE report.
Mo-Ni: Y. Cui, Private communication to SGTE, 1999.
Mo-Si: C. Vahlas, P.Y. Chevalier, E. Blanquet, Calphad 13 (1989) 273-292.
Mo-Ta: Y. Cui, Private communication to SGTE, 1999.
Mo-Ti: COST 507, pp.249-252.
Mo-W: P. Gustafson, Z. Metallkde 79 (1988), pp.388-396.
Nb-Ti: COST 507, pp.256-260.
Nb-V: K.C.H. Kumar, P. Wollants, L. Delaey, Calphad 18 (1994), pp. 71-79.
Nb-W: W. Huang, private communication to SGTE, 1995.
Nb-Zr: A.F. Guillermet, Z. Metallkde. 82 (1991), pp.478-487.
Ni-Si: M. Lindholm, B. Sundman, Met.Trans.A 26A (1996), pp. 2897-2903.
Ni-Ta: Y. Cui, Z. Jin, Z Metallkde 90(1999)3, pp.233-241; Ni-Ta'
Y. Cui, Private communication, 1999; Mo-Ni-Ta'
Ni-Ti: C.S. Oh, J. Korean Inst.Met.Mater. 33 (1995), pp.129-136.
Ni-V: COST 507, pp.261-263.
Ni-W: P. Gustafson, A. Gabriel, I. Ansara, Z.Metallkde. 78 (1987), pp.151-156.
Ni-Y: Z. Du, W. Zhang, Report F-96-07, May 1996, Univ.Science and Tech.,
Beijing.
Ni-Zr: G. Ghosh, J.Mater.Res. 9 (1994), pp.598-616.
Si-Sn: COST 507, pp.264-265.
Si-Ta: C. Vahlas, P.Y. Chevalier, E. Blanquet, Calphad 13 (1989), pp. 273-292.
Si-Ti: COST 507, pp.266-269.
Si-V: COST 507, pp.270-273.
Si-W: C. Vahlas, P.Y. Chevalier, E. Blanquet, Calphad 13 (1989), pp. 273-292.
Si-Y: COST 507, pp.274-277.
Si-Zn: COST 507, pp.278-279.
Si-Zr: COST 507, pp.280-283.
Sn-Ti: COST 507, pp.284-287.
Sn-Zn: COST 507, pp.288-289.
Sn-Zr: COST 507, pp.290-292.
Ta-Ti: COST 507, pp.293-296.
Ta-W: A.F. Guillermet, W. Huang, unpublished research, KTH, 1995.
Ta-Zr: A.F. Guillermet, J.Alloys and Compounds, 226 (1995), pp.174-184
Ti-V: COST 507, pp.297-298.
Ti-W: COST 507, pp.299-302.
Ti-Zr: K.C.H. Kumar, P. Wollants, L. Delaey, J.Alloys and Compounds, 225
(1994), pp.121-127.
V-Zr: COST 507, pp.303-304.
Y-Zr: H. Flandorfer, J. Groebner, A. Stamou, N. Hassiotis, A. Saccone,
P. Rogl, R. Wouters, H.J. Seifert, D. Maccio, R. Ferro,
G. Haidemenopoulos, L. Delaey, G. Effenberg, Z. Metallkde. 88 (1997),
pp.529-538.
Al-C-Si: COST 507, pp.307-308.
Al-Cu-Li: COST 507, pp.309-310.
Al-Cu-Mg: T. Buhler, S.G. Fries, P.J. Spencer, H.L. Lukas, J. Phase Equilibria
19 (1998), pp.317-333.
Al-Cu-Mn: T. Jantzen, P. Franke, unpublished work, 2002.
Al-Cu-Si: COST 507, pp.315.
Al-Cu-Zn: H. Liang, Y.A.Chang, J. Phase Equilibria 19 (1998), pp.25-37.
Al-Fe-Mn: COST 507, pp.316-318.
Al-Fe-Si: COST 507, pp.319-321.
Al-Fe-Zn: T. Jantzen, unpublished work, 1999.
Al-Li-Mg: COST 507, pp.322-324.
Al-Mg-Mn: COST 507, pp.325-326.
Al-Mg-Si: H. Feufel, T. Goedecke, H.L. Lukas, F. Sommer, J. Alloys &
Compounds 247 (1997), pp.31-42.
Al-Mg-Zn: P. Liang, T. Tarfa, J.A. Robinson, S. Wagner, P. Ochin, M.G. Harmelin,
H.J. Seifert, H.L. Lukas, F. Aldinger, Thermochim.Acta 314 (1998)
pp. 87-110.
Al-Mn-Si: COST 507, pp.333-335.
Al-Mo-Ti: COST 507, pp.336-338.
Al-Nb-Ti: COST 507, pp.342-345.
Al-Si-Zn: COST 507, p.346.
Al-Sn-Zn: COST 507, pp.347-348.
Al-Sn-Zr: COST 507, pp.349-350.
Al-Ta-Ti: COST 507, pp.351-353.
Al-Ti-V: COST Action 507, Final computer database, 1998.
Al-Ti-W: COST 507, pp.354-356.
B-C-Hf: COST Action 507, Final computer database, 1998.
B-Hf-Ti: COST 507, pp.357-358.
Cr-Cu-Zr: COST Action 507, Final computer database, 1998.
Cu-Mg-Ni: Based on M.H.G. Jacobs, P.J. Spencer, unpublished work, LTH,
RWTH-Aachen, 1997. (Liquid interaction parameters only).
Cu-Mg-Si: COST 507, pp.360-361.
Cu-Mg-Y: COST 507, p.359.
Cu-Mg-Zn: P. Liang, H.J. Seifert, H.L. Lukas, G. Ghosh, G. Effenberg, F. Aldinger,
Calphad 22 (1998), pp. 527-544.
Cu-Sn-Zn: T. Jantzen, P.J. Spencer, Calphad 22 (1998), pp. 417-434.
Al-Cu-Mg-Zn: H. Seifert, MPI Stuttgart, private communication, 1999.
Al-Fe-Mg-Si: A. Prikhodovski, Modelling of the coarsening process and application
to semo-solid processing, Doctoral Thesis, RWTH Aachen, 2000.
(quaternary compound phase only).
Al-Fe-Mn-Si: E. Balitchev, T. Jantzen, I. Hurtado and D. Neuschütz, CALPHAD,
27 (2003) 3, pp.275-278.